Unicity in piecewise polynomial L1-approximation via an algorithm
نویسندگان
چکیده
Our main result shows that certain generalized convex functions on a real interval possess a unique best L1 approximation from the family of piecewise polynomial functions of fixed degree with varying knots. This result was anticipated by Kioustelidis in [11]; however the proof given there is nonconstructive and uses topological degree as the primary tool, in a fashion similar to the proof the comparable result for the L2 case in [5]. By contrast, the proof given here proceeds by demonstrating the global convergence of an algorithm to calculate a best approximation over the domain of all possible knot vectors. The proof uses the contraction mapping theorem to simultaneously establish convergence and uniqueness. This algorithm was suggested by Kioustelidis [10]. In addition, an asymptotic uniqueness result and a nonuniqueness result are indicated, which analogize known results in the L2 case.
منابع مشابه
Approximating L1-distances Between Mixture Distributions Using Random Projections
We consider the problem of computing L1-distances between every pair of probability densities from a given family. We point out that the technique of Cauchy random projections [Ind06] in this context turns into stochastic integrals with respect to Cauchy motion. For piecewise-linear densities these integrals can be sampled from if one can sample from the stochastic integral of the function x 7→...
متن کاملOn 3-monotone approximation by piecewise polynomials
Abstract. We consider 3-monotone approximation by piecewise polynomials with prescribed knots. A general theorem is proved, which reduces the problem of 3-monotone uniform approximation of a 3-monotone function, to convex local L1 approximation of the derivative of the function. As the corollary we obtain Jackson-type estimates on the degree of 3-monotone approximation by piecewise polynomials ...
متن کاملApproximation and Compression of Piecewise Smooth Functions
Wavelet or subband coding has been quite successful in compression applications, and this success can be attributed in part to the good approximation properties of wavelets. In this paper, we revisit rate-distortion bounds for wavelet approximation of piecewise smooth functions, in particular the piecewise polynomial case. We contrast these results with rate-distortion bounds achievable using a...
متن کاملEffective bounds on strong unicity in L1-approximation
In this paper we present another case study in the general project of Proof Mining which means the logical analysis of prima facie non-effective proofs with the aim of extracting new computationally relevant data. We use techniques based on monotone functional interpretation (developed in [18]) to analyze Cheney’s simplification [6] of Jackson’s original proof [10] from 1921 of the uniqueness o...
متن کاملApproximation of the n-th Root of a Fuzzy Number by Polynomial Form Fuzzy Numbers
In this paper we introduce the root of a fuzzy number, and we present aniterative method to nd it, numerically. We present an algorithm to generatea sequence that can be converged to n-th root of a fuzzy number.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 65 شماره
صفحات -
تاریخ انتشار 1996